
Abstract We propose that, in large unit cell struc-

tures, the operation of local symmetries rather than a

coincidence site lattice (CSL), is important for the

creation of special, low energy, grain and twin bound-

aries. We illustrate this with a Dürer tiling, and its

monoclinic realization, as well as with crystals with

large icosahedral motifs.

Introduction

Thanks to the pioneering work of David Brandon [1,

2] and many others [3, 4], we know that special grain

boundaries are likely to occur when the two abutting

crystal with face- or body-centered cubic structures

are oriented to form a three-dimensional coincidence

site lattice (CSL). The CSL concept began with

Friedel’s work on twinning [5]. He proposed that

twins be defined by a shared common lattice, a twin

lattice. When the grain boundaries or twin boundaries

thread through common lattice sites, any atoms on

those coinciding lattices sites fit into both grains, and

this possibly results in low energy and other special

properties. This simple idea has been widely invoked,

but it ignores many factors, and overemphasizes

some.

CSLs (and twin lattices, which for convenience we

will subsume under CSLs) are characterized by a single

positive integer, S,which is the ratio of the volumes of

the unit cells in the CSL and the lattice of either

crystal, respectively. Therefore, unless the CSL has

three-dimensional periodicity, S is not defined. This

requirement of three-dimensional periodicity specifies

a set of exact rotations and, for each non-cubic crystal

system, a set of Friedel twinning ‘‘laws’’ [5–7], which

place additional conditions on the lattice parameter

ratios and the cell angles of the unit cells.1 Grain and

twin boundaries with deviations from these conditions

on the rotation and on the unit cell parameters are

commonly observed and this has led to an assumption

that many properties are continuous functions of the

unit cell parameters through the exact conditions. This

in turn has created a need to specify how much

deviation can be tolerated for a bicrystal and its grain

boundary to have approximately the special properties

associated with a CSL.

The principal idea in this paper is that the properties

of twin or grain boundary should depend only on the

local atomic arrangement near it. Invoking the CSLs

guarantees that atoms on the coinciding sites fit into

both crystals, but regions of poor fit fall between the

sites. Should we be looking for other criteria? Consider

the following:

(1) Why should the few coincidence points have such

an important effect, when most of the atoms near

a grain or twin boundary are not on such points?

As S increases, its effect must decrease, while it
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persists for near-CSL conditions where S is

infinite in a strict definition.

(2) In a three-dimensional CSL, why should coinci-

dence points distant from a grain or twin bound-

ary have any effect on it?

(3) For non-cubic crystals not satisfying the twinning

‘‘laws’’ we can create a symmetric tilt boundary

on any rational plane with the same kind of fit

along it as if there had been a CSL.

(4) Grain boundaries are characterized by five angular

variables (two if they are between two-dimen-

sional crystals). The CSL is specified by the three

angles which give the relative orientation of the

two crystals; missing are the two other angles

which specify the orientation of the tangent or

normal to the boundary. CSLs, even between cubic

crystals, are never cubic, and often have large axial

ratios. The density of CSL sites is strongly depen-

dent on the orientation of every rational plane

through lattice sites. Is there a correspondence

between the orientation dependence of this

density and the energy of the boundary?

(5) Crystal lattices, and the diffraction intensity from

the crystals, can be considered invariant to any

translations, but the atomic structures at the

boundary depend on the relative translation of

the crystals along and normal to the boundary.

Lattices can be shifted to gives the highest density

of coincidences on a boundary. Crystals can be

shifted to give the best atom fit. Is there any

connection between these shifts?

We will address some of these questions with a

boundary in a two-dimensional tiling first displayed by

Albrecht Dürer, and then by TEM projections of grain

boundaries between three-dimensionalAl13Fe4 crys-

tals, a polycrystalline aggregate of cubic-a-Al9(Mn,

Fe)2Si2 and a collection of examples from our work

and the literature.

A two-dimensional example: the Dürer tiling

We begin with a two-dimensional rectangular tiling

structure, Fig. 1a, originally drawn by Dürer and

published in 1525 in A Manual of Measurements of

Lines, Areas, and Solids by Means of Compass and

Ruler [8]. In each centered rectangular unit cell of this

periodic structure with plane group c2mm, Fig. 1b,

there aretwo-fold axes, mirrors shown as solid lines,

and glide mirror shown as dashed lines. The centered

unit cell has four pentagons in two orientations and

two skinny rhombuses.

For there to be a CSL the ratio b2/a2 has to be a

rational fraction with small integers [5, 6]. If we let the

length of the sides of the regular pentagons be 1, the

long side of the unit cell a = 4sin(p/5) + 2sin(2p/5)

= 4.979..., and the short side b = 1 + 2cos(p/5) =

s = 1.618034, where s ¼ ð1þ
ffiffiffi

5
p
Þ=2 is the golden

mean. Then b2/a2 = 9.472.... Since this is irrational

there can be no two-dimensional CSL.

With these tiles Dürer displayed a ten-grain

structure with a perfect match of all tiles throughout,

within the grains and across the grain boundaries, with

no distortions or changes in coordination number

(Fig. 1c). Clearly these would be good interfaces. The

grain boundaries interrupt the translational symmetry

Fig. 1 Dürer’s tiling of pentagons and rhombuses. (a) The
periodic tiling with a centered rectangular unit cell outlined, and
a local glide mirror (11) line, bisecting two of the pentagon
edges, indicated by a dashed line. (b) The c2mm unit cell and its
symmetry elements [6]. The local glide mirror line contains the
two-fold axes. (c) Ten wedge-shaped crystals arranged by Dürer
in five orientations p/5 rad or 36� apart. Note that all pentagons
are in one of just two orientations, that each grain boundary is
along a glide mirror line, and that each entire pentagon along
that line fits into both crystals
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and produce ten lattices, each rotated from its neigh-

bors by / = 2 arctan a/b = p/5 rad (or 36�). All the

pentagons in every crystal have either of these same

two orientations. Each p/5 rotation converts the two

pentagons into each other.

Each grain boundary is a straight tilt boundary with

a displacement along the (1 1) for both crystals;

because of this displacement the boundary is along a

glide mirror line of each bi-crystal in Fig. 1c, as

indicated by the dashed lines.

Since ‘‘reflection’’ is another definitions of twins,

Fig. 1c shows a ten-fold twin, even though the Friedel

twinning laws are not met. Each pair of adjacent grains

form a perfect glide reflection twin.

The CSL rules place the boundary along a high

density of CSL points or the O-lattice points, or along

an O-line [3]; they all fail in this example. The

translation vector of this centered unit cell and the

periodicity along the boundary are both (1/2)Æ11æ.
Since the glide component of the reflection is (1/4)Æ11æ,
this glide distance has the largest possible difference

from the coincidence along the boundary, which

assures that there are no O-lattice points or O-lines

in its vicinity. There are O-lattice lines parallel to the

boundary, spaced periodically ða=4Þ
ffiffi

ð
p

a2 þ b2Þ ¼
6:225 . . ., which is incommensurate with the spacing

of (1, 1) lattice lines, and symmetrically arrayed

about the boundary, and as far away as possible from

it [9].

A one-dimensional set of coincidence points can be

created along any grain boundary by shifting the

lattices. However, if the origins of the lattice are

chosen to be at either of the Wyckoff sites with 2mm

symmetries, there are no coinciding lattice points

anywhere, and the boundary is along a line with the

largest separation anywhere between lattice points in

the two structures. If one accepts as coincidences point

which are separated by less than some � there will be a

quasiperiodic CSL. This quasilattice is symmetric

about the boundary, but again with no points near it.

The reason for the good fit along the boundary is not

because there is a CSL or an O-line; it originates in a

local symmetry which is not a symmetry operation of

the structure. In the Dürer tiling this is a local glide

mirror along the (1 1), which leaves the pentagons

along it invariant, as shown by the dashed line in

Fig. 1a, but because it is not a symmetry operation of

the periodic tiling, the operation of this local glide

mirror creates the grain boundary with the excellent fit.

The five-fold rotation of individual pentagons is an

alternate local symmetry, which is not a symmetry

operation of the crystal, to consider. While this

rotation of a structural motif predicts the correct tilt

angle, its range of good fit does not extend beyond the

pentagon and one of its neighbors.

Experimental examples

Monoclinic Al13Fe4

Twinning with an apparent non-crystallographic ten-

fold rotation axis was observed for crystals of a

monoclinic Al3Fe (or Al13Fe4) phase (mC102, C2/m)

with b near (3/5)p (or 108�). This phase is stable and

occurs in a number of Al-transition metals systems,

e.g., Al–Co, Al–Ru and Al–Rh [10]. Its structure was

determined and analyzed by Black [11] and is shown in

Fig. 2a projected along the [010] direction.

Fig. 2 The crystal structure of monoclinic Al13Fe4, C2/m. (a) A
unit cell projected along [010], showing the approximate local
glide mirrors as dashed lines. Fe atoms are darker and larger. (b)
The projection of the crystal structure with only the Fe atoms
shown in a Dürer tiling (shaded, compare with Fig. 1a) and unit
cells (dotted lines). The corners are marked by pairs of Fe. The
approximate local glide mirrors which go through a set of two-
fold inversion axes [6] accurately bisect the pentagon edges
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To emphasize that the projected structure can be

tiled approximately as the Dürer tiling, only the

projected Fe atoms are shown in Fig. 2b. There are

columns of Fe atoms, two per unit cell, at the corners of

the tiling, and an Fe at the center of the pentagons. The

tiling of pentagons is indeed the same as the periodic

tiling of Dürer, Fig. 1a. Therefore the same special

boundaries as in Dürer’s pentagonal twins are not

unexpected for Al13Fe4.

To see if the planes, which are indicated by the

dashed lines, are approximate local glide planes, we

have to look at how well the atoms superimpose after a

glide reflection. Unlike perfect superposition for the

entire row of pentagons in the Dürer tiling after the

glide reflection, we can’t expect perfection. Ignoring

the direction of the projection, the superposition is

good for the atoms along the line itself and for most of

the atoms within the row of pentagons. As in the Dürer

tiling the fit becomes less good further away, but that is

of little consequence for a glide reflection twin bound-

ary along this plane.

Indeed, in rapidly solidification conditions out in Al-

rich alloys, the primary Al13Fe4 phase grows often in a

form of star-like twinned crystals. Beautiful examples

of these twins with a 10-point star morphology were

reported by Louis et al. [12] for an Al–Fe alloy, and

Fung et al. [13] and Steeds et al. [14] have reported

examples of the Al13Fe4 microtwins coexisting with the

decagonal quasicrystal. Figure 3a shows a high resolu-

tion image of one of such aggregates which we

observed occasionally in a melt spun Al70Fe13Si17

alloy. The image is obtained with the [010] direction

parallel to an electron beam.

The upper part of the image shows a fan of crystals.

Rotation between adjacent crystals was measured to be

36�, and therefore the crystals are related to each other

by ten-fold rotations. According to the tiling represen-

tation of the image, Fig. 1c, the rotated crystals are

aggregates with invariant orientations of two mirror-

related pentagons, and good overlap of structural units.

The boundary, shown as a tiling in Fig. 3b, can be

considered as a (201) glide mirror plane of the

monoclinic lattice, or a (101) if we approximate it by

a orthorhombic lattice. The described twinning is

similar to multiple twinning observed in thes2-inflated

Al13Co4 [15] (201) glide twins. Again, an approximate

local glide reflection symmetry permits the formation

of a well fitting twin boundary.

The bottom part of the image in Fig. 3a has a crystal

with planar defects of varying thickness, which are

parallel to (001). Thicker defects are recognized as

twins produced by (001) mirror reflection—a twinning

of a monoclinic lattice, which can not be discerned in

the two-dimensional tiling, and which again does not

change the orientation of pentagons. The (001) and

(100) twinning was suggested by Black [11], with a

structural model involving the (001) glide twinning

plane. The (001) and (100) twins were found in the s2-

inflated Al13Co4 phase by means of electron diffraction

[16].

a-cubic Al–Mn–Fe–Si

We studied the effect of the substitution of Mn by Fe

on microstructure of Alð91�93ÞðMn;FeÞð5�7ÞSi2 and

Al75(Mn, Fe)15Si10 rapidly solidified alloys [17, 18].

The alloys were prepared by different methods,

including melt spinning, surface e-beam melting and

powder atomization. Typically, the microstructures

consist of primary solidified nodules surrounded by a

duplex structure. Examples of the microstructures

observed for high-Al Alð91�93ÞðMn;FeÞð5�7ÞSi2 are

shown in Fig. 4. Although morphologically the struc-

Fig. 3 An aggregate in a melt spun Al70Fe13Si17 alloy. (a) A
high-resolution TEM image with [010] parallel to the beam.
Compare with Fig. 1c. (b) The analog of the twins in the Dürer
tiling. The twin boundary is a the glide mirror plane of the
bicrystal
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tures look similar, there a is profound effect of

substituting Fe for Mn. As evident from the diffraction

patterns, the nodules have significantly different struc-

tures: alloys containing no-Fe have an icosahedral

phase (Fig. 4a), alloys containing no Mn are glassy

(Fig. 4c), and the alloys with Fe/Mn = 1 give an

unusual polycrystalline structure (Fig. 4b). The diffrac-

tion pattern of this polycrystalline structure resembles

that of the icosahedral phase, namely having average

symmetries and angular relationship of the five-, three-

and two-fold axes, Fig. 4d, but analysis of the patterns

determined that the polycrystalline structure consists

of small grains of the cubic a-A19(Mn, Fe)2Si2 phase

(space group symmetry Im�3, a = 1.26 nm [19–23]).

Because there are only five orientational variants of

the grains, the composite diffraction pattern of hun-

dreds of grains in one nodule appears as that of a single

crystal. The orientations of the variants is such that the

Fig. 4 The effect of substituting Fe for Mn is a series of Al–Mn–
Fe–Si alloys. (a) Diffraction from alloys with no Fe shows
nodules of the icosahedral phase. (b) With Fe/Mn = 1, a single
nodule of a polycrystalline aggregate shows major SAED
patterns similar to that of the icosahedral phase. However,
instead of reflections of the icosahedral phase, these are clusters

of spots belonging to five variants of the cubic approximant
periodic phase Al9(Fe, Mn)2Si2, a = 1.26 nm, cI144, Im�3. (c) The
alloy with no Mn shows nodules with a glassy diffraction pattern.
(d) Rotating the aggregate in b shows that it accurately mimics
icosahedral symmetry
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fifteen two-fold axes of an icosahedron are grouped

into five sets of mutually orthogonal triplets; the axes

of each cubic crystal are parallel to one of the

orthogonal two-fold triplets. If one set is along

Æ100æ¢s, the 12 other two-fold axes are along

Æ1,s,(1 + s)æ axes. Thus, e.g., the triplet [(1 + s), – 1,

s], [ – 1, s, (1 + s)], and [s,(1 + s), – 1] defines the

orientation of another variant. (The algebraic property

of Golden Mean, s2 = 1 + s, is used to show orthog-

onality of the axes.) The misorientations between any

two grains are the same irrational rotations generated

by the operation of icosahedral symmetry elements.

Confirmation for the non-crystallographic orienta-

tion relationship was also found in high-resolution

structural TEM images. An example in Fig. 5 shows

a grain boundary between two cubic crystals of the

a-Al–Mn–Fe–Si phase, both oriented with a [111] axis

parallelto the electron beam. The 110 planes are

rotated to each other 15.6� or 44.4� (exact icosahedral

symmetry gives 44.48�) ðarcsin½
ffiffiffi

3
p

=4� ¼ 44:48�Þ. There

are no CSL rotations about [111] which are close to the

measured 44.4�. Even though the crystals are cubic,

there is no low
P

CSL for the observed rotations.

This cubic a-Al9(Mn,Fe)2Si2 structure is not a good

candidate for special boundaries based on the coinci-

dence of at most two atoms out of 144 atoms in a unit

cell, bearing in mind that it could be none, since the

positions with cubic symmetry are unoccupied. The

structure is an approximant [19] of the icosahedral

phase considered as a bcc packing of multishell clusters

(motifs) of near-icosahedral symmetry. Connectivity of

the clusters in a cell through overlap of outer shells [20]

along the three-fold Æ111æ directions maintains the

long-range orientational order in both this and the

icosahedral phase.

The experimental results imply that the approxi-

mately icosahedral motifs of the cubic phase continue

to pack across these grain boundaries with no detect-

able change in orientation. Even though the lattices

rotate, the motifs do not rotate and retain the same

orientation in all crystals and in the grain boundaries

within one polycrystalline nodule. The changes in

orientation of the cubic lattices were found to be non-

crystallographic symmetry operation of the icosahedra,

five-fold rotations along irrational axes of the cubic

system, which kept all the atoms in the motifs along the

grain boundary intact, and their number can be much

greater than any CSL of this large unit cell. These

results support a need for an enlarged criterion for the

existence of special grain boundaries.

Other examples from the literature

Some additional examples of the same phenomena of

crystalline aggregates with invariant orientation of

motif can be found in the literature. Such a parallelism

of motifs has been reported in microcrystalline struc-

tures displaying ‘‘apparent’’ icosahedral symmetry in a

Ni–Ti alloy [24] and ‘‘apparent’’ decagonal symmetry

in V–Ni–Si [25] and Al–Fe–Ce [14] alloys. In these

observations the crystals were so small that they were

called, respectively, ‘‘local translational order in a

quasicrystal’’ and ‘‘microdomains’’. An example of

icosahedral twinning of a monoclinic Al45Cr7 phase

was found by Zhang et al. [26]. In that case the

structural motif is a simple 13 atoms icosahedron which

remains orientationally invariant throughout the ob-

served crystalline aggregate. With that condition 30

orientation variants of the monoclinic phase are

possible. In a study of an octagonal quasicrystal in

Cr–Ni–Si, polycrystals that were called ‘‘45� twins’’

(p/4) and ‘‘microtwins of the beta-manganese

Fig. 5 A grain boundary between two a-cubic phase crystals,
oriented with their common [111] tilt axis parallel to the electron
beam. The {110} are rotated by 15.6� or 44.4� (the exact
icosahedral symmetry gives 44.48�) ðarcsin½

ffiffiffi

3
p

=4� ¼ 44:48�Þ.
There are no [111] CSL rotations close to the measured 44.4�
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structure’’ were observed [27, 28]. It is obvious from

the diffraction patterns that such a rotation does not

lead to a twin lattice. Therefore, this is an eight-fold

example of the motif invariant orientation relationship.

But even in the case of merohedral twinning in pyrite,

Donnay et al. [29] concluded that the main feature of

that twinning is an invariance of the lattice complex

occupied by Fe.

Discussion

The generalization that we draw from these examples is

that the operation of local symmetries of crystal

structures, which are not symmetry operations of the

entire crystals, can create defects, in these examples

interfaces, in which there is little or no atomic mismatch

extending over several atomic layers. This is in contrast

to an interface in a CSL for which there is a modulation

of distortions between the points of exact fit.

Dürer’s geometrical example with a centered rect-

angular structure illustrates that it is possible to have

an interface consisting of a continuous chain of

pentagons which fit perfectly into either crystal. There

is no distortion anywhere; every feature fits into one or

both of the crystals. A local glide mirror along (11) was

present in each tiling crystal as a local approximate

symmetry element which extends to cover just a Æ11æ
periodic chain of pentagons. In the twinned bicrystal

this periodic chain is converted into a perfect glide

mirror along the twin interface; the crystals are in

reflection twin orientations to each other, however,

with a glide component.

Because b2/a2 is irrational there can be no two-

dimensional CSL. The center of the interface does not

occur at a line in which there is coincidence; it is

instead where the deviation from coincidence is a

maximum, at half of the interface periodicity. This

interface with this excellent fit is not one that would be

chosen with any of the CSL criteria.

The experimental examples show an example of an

approximate local glide mirror plane and several

examples of local icosahedra, a non-crystallographic

motif, and an eight-fold motif. TheAl13Fe4 in projec-

tion mimics the local glide mirror of the Dürer tiling

quite well. In the crystals with local icosahedral motifs,

icosahedral rotations will leave the motifs unrotated

and only slightly distorted at the grain boundaries, but

crystal axes will rotate. Because the a-Al9(Mn, Fe)2Si2
is cubic, it can have rotations that give CSL, but such

rotations would greatly distort the large icosahedral

motifs in the region of the grain boundary, and are

likely to be of high energy.

In each of these cases there are local symmetries

that are not symmetries of the individual crystals.

These can be crystallographic, as in the case of the

glide mirror in Al–Fe and the four-fold in merohedral

pyrite, or non-crystallographic, five-fold in the case of

the cubic a-Al–Fe–Mn–Si and eight-fold in Cr–Ni–Si.

The rotations to consider for special low energy

grain boundaries are those compatible with the motifs

but not with the crystal structure. One way of recon-

ciling this view with the CSL methods is to recognize

that a single metallic atom is a motif with the highest

non-crystallographic symmetry of the holohedral infi-

nite rotation group, compatible with any rotation,

provided the angular arrangement of neighbors is of

lesser importance. Then CSL rotations have an ener-

getic advantage of increasing the density of well-fitting

atoms. But whenever the atom becomes part of a large

motif, the CSL rotations are unlikely to be compatible

with it. Then rotations which will leave the motif

unaffected need to be considered, and the problem

becomes one of finding interface geometries which

raise the density of these motifs.

This creates an emphasis on details of crystal

structures, not just on the ratios of lattice parameters

and unit cell angles, but also on the numbers in the

Wyckoff positions. That b�108� is important for the p/

5 twins. In a cubic structure with an m�3 point group

m�3m, there are 12m positions of the type 0, y, z. For

those positions to form a regular icosahedron, the ratio

of x to y has to be near s or 1/s. For the Al position in

Al12Re, for example, x/y = 1.638 [10].

The rigid conditions for twin lattices seem to have

fallen out of favor among crystallographers. For

hexagonal and tetragonal alloys in which the c2/a2

ratio varies with composition, there seems to be no

special twinning effects when it becomes rational with

small integers. The twinning ‘‘laws‘‘ are not mentioned

in the latest edition of the International Tables for

crystallography [30]. Will there be a similar shift in

emphasis for grain boundaries?
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